APPROXIMATE SOLUTION OF THE LAMINAR BOUNDARY LAYER EQUATION FOR A NON-NEWTONIAN FLUID ON A PLATE

K. I. Strakhovich and S. L. Lur'e

Inzhenerno-Fizicheskii Zhurnal, Vol. 10, No. 5, pp. 592-595, 1966
UDC 532.517.2

The laminar boundary layer equations for a non- Newtonian fuid on a flat plate are reduced to Prandtl-Mises variables and solved approxi. mately in quadratures. The velocity profiles and the resistance coefficients are given for certain values of n. Agreement with the results of exact calculations is good.

For a fluid satisfying the rheological power law

$$
\begin{equation*}
\tau=K\left(\frac{\partial u}{\partial y}\right)^{n}, \tag{1}
\end{equation*}
$$

the laminar boundary layer equations on a flat plate, in dimensionless form, are [1]

$$
\begin{equation*}
u_{1} \frac{\partial u_{1}}{\partial x_{1}}+v_{1} \frac{\partial u_{1}}{\partial y_{1}}=\frac{\partial}{\partial y_{1}}\left(\frac{\partial u_{1}}{\partial y_{1}}\right)^{n}, \quad \frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial v_{1}}{\partial y_{1}}=0 \tag{2}
\end{equation*}
$$

where

$$
\begin{gather*}
x_{1}=\frac{x}{L}, \quad y_{1}=\frac{y}{L} R^{\frac{1}{1+n}}, \\
u_{1}=\frac{u}{U}, \quad v_{1}=\frac{v}{U} \mathrm{R}^{\frac{1}{1+n}}, \\
R=\frac{\rho U^{2-n} L^{n}}{K} . \tag{3}
\end{gather*}
$$

The boundary conditions are

$$
\begin{gather*}
\text { when } y_{1}=0 \quad u_{1}=0, \quad v_{1}=0 ; \\
\text { when } y_{1}=\infty \quad u_{1}=1 . \tag{4}
\end{gather*}
$$

Introducing the stream function ψ_{1}, we replace the second equation of (2) by the relations

$$
\begin{equation*}
u_{1}=\frac{\partial \psi_{1}}{\partial y_{1}}, \quad v_{1}=-\frac{\partial \psi_{1}}{\partial x_{1}} \tag{5}
\end{equation*}
$$

We shall pass from x_{1}, y_{1} to the new independent variables $x_{1}, \psi_{1}\left(x_{1}, y_{1}\right)$-Prandtl-Mises variables [2], and transform the first equation of (2) into these variables. Thus, it now takes the form

$$
\begin{equation*}
\frac{\partial z}{\partial x_{1}}=\sqrt{2 z} \frac{\partial}{\partial \psi_{1}}\left(\frac{\partial z}{\partial \psi_{1}}\right)^{n}, \tag{6}
\end{equation*}
$$

where we have designated

$$
\begin{equation*}
z=u_{1}^{2} / 2 \tag{7}
\end{equation*}
$$

Taking the straight line $y_{1}=0$ as the zero stream line ($\psi_{1}=0$), we write the boundary conditions (4), taking (7) into a.ccount, as

$$
\begin{align*}
& \text { when } \psi_{1}=0 z=0 \text {; } \\
& \text { when } \psi_{1}=\infty \quad z=1 / 2 \text {. } \tag{8}
\end{align*}
$$

Velocity distributions in the boundary layer with: 1) $\mathrm{n}=3$; 2) 2 ; 3) 1.67 ; 4) 1.33 ; 5) 1.0 ;
6) 0.7 ; 7) 0.7 ; 8) $0.6 ; 9) 0.5$; and 10) 0.3 .

If z is regarded as being a function of only one variable

$$
\begin{equation*}
\zeta=\psi_{1}\left[\sqrt{2} n(1+n) x_{1}\right]^{-1 / a+n\}} \tag{9}
\end{equation*}
$$

then (6) becomes the ordinary differential equation

$$
\begin{equation*}
-\zeta=\sqrt{z}\left(z^{\prime}\right)^{n-2} z^{\prime \prime}=\frac{\sqrt{z}}{n-1} \frac{d}{d \zeta}\left(z^{\prime}\right)^{n-1}, \tag{10}
\end{equation*}
$$

where the primes denote differentiation with respect to 5 .

The boundary conditions (8) are

$$
\begin{gather*}
\text { when } \zeta=0 \quad z=0 \\
\text { when } \zeta=\infty \quad z=1 / 2 \tag{11}
\end{gather*}
$$

Equation (10) is easily integrated, if we put $z=$ $=z_{0}=1 / 4$ as a zeroth-order approximation (under the square root), i.e., half of its value at the outer edge of the boundary layer, as was done in [3]. We then obtain the equation

$$
\begin{equation*}
-\zeta=\frac{1}{2}\left(z^{\prime}\right)^{n-2} z^{\prime \prime}=\frac{1}{2(n-1)} \frac{d}{d \zeta}\left(z^{\prime}\right)^{n-1} \tag{12}
\end{equation*}
$$

which was examined in [4, 5] for $n<1$ in connection with the problem of unsteady motion of a non-Newtonian fluid on an infinite plate.

For $n=1$ (Newtonian fluid), the solution of (12) with boundary conditions (11) has the form

$$
\begin{equation*}
z=\frac{1}{2} \frac{2}{\sqrt{\pi}} \int_{0}^{\zeta} \exp \left(-\zeta^{2}\right) d \zeta=\frac{1}{2} \operatorname{erf} \zeta \tag{13}
\end{equation*}
$$

Comparison of the Approximate and Exact Solutions

n	c	2×19	${ }_{1}$	$B_{n}[1]$	$B_{n}[6]$	Error,
$3 / 1=3$	0.1502	0.9485	$0.20: 3$	0.10 .11	-	5
$2 / 1=2$	0.8256	0.82 .30	0.3277	0.3224	-	1.6
$3 / 3 \cong 1.67$	1.250	0.7002	0.4015	-	-	-
$3 / 2=1.5$	1.697	0.720	0.1400	0.1378	-	2.6
$7 / 5=1.4$	2.100	0.0936	(). 4828	-	-	-
$4 / 3 \cong 1.33$	2.631	0.6742	0.5070	-	--	-
$6 / 5=1.2$	4.0505	$0.63 \cdot 4$	0.5043	-	-	
$1: 10$	-	-	0.6709	0.60 .41	\%.60.12	1.0
$45=0.8$	5.782	0.1×35	0.8152	硡	ט.nius	0.5
$7 / 9 \simeq 0.78$	5.311	0.17 .13	0.8350	-	-	-
$3 / 4=0.75$	4.851	0. $0_{6} 62$	0.8 siol	-	-	-
$5 / 7 \simeq 0.71$	4.407	0.4446	0.80 .4	-	-	-
$3 / 5=0.6$	3.6:31	0.3935	1.019	-	1.017	0.2
$1 / 2=0.5$	3.10 .4	0.3451	1.13\%	. 1.15 i	1.151	0.1
$1 / 3 \simeq 0.33$	3.674	0.2608	1.435	-		

For $n \neq 1$, integrating (12) twice, and taking the first condition of (11) into account, we find

$$
\begin{equation*}
z=\int_{0}^{\zeta}\left[(n-1)\left(C-\zeta^{2}\right)\right]^{\frac{1}{n-1}} d \zeta \tag{14}
\end{equation*}
$$

The arbitrary constant C for $n<1$ is determined from the second condition of (11), and for $n>1$ from the condition

$$
\begin{equation*}
\text { when } \zeta=\zeta_{\delta} z^{\prime}=\dot{0}, z=1 / 2 \text {, } \tag{15}
\end{equation*}
$$

where ζ_{δ} is the value appropriate to the finite thickness of the boundary layer $[1,5]$.

The integral (14), as an integral of a binomial differential, may be expressed in finite form only for certain values of n.

In view of (7), the velocity profiles are calculated from the formula

$$
\begin{equation*}
u_{1}(\zeta)=\sqrt{2 z(\zeta)} \tag{16}
\end{equation*}
$$

From (5) and (9) it follows that

$$
\begin{equation*}
\eta=y_{1}\left[\sqrt{2} n(1+n) x_{1}\right]^{-\frac{1}{1+n}}=\int_{0}^{\zeta} \frac{d \zeta}{u_{1}(\zeta)} \tag{17}
\end{equation*}
$$

Equations (16) and (17) give the parametric relation between u_{1} and η.

The calculated velocity profiles are shown in the figure. Also shown, is the curve corresponding to the exact solution of the Blasius equation [2] (dashed curve, $n=1$); its difference from the approximation is less than 4%.

With the aid of (1), (3), (5), and (9) let us determine the local frictional drag of the plate

$$
\begin{equation*}
c_{f}=2 \tau_{w} / p U^{2}=B_{n} / R_{x}^{1 /(1+n)}, \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{n}=2[\sqrt{2} n(1+n)]^{-n /(1+n)}\left[z^{\prime}(0)\right]^{n}, R_{x}=\rho U^{2-n} x^{n} / K . \tag{19}
\end{equation*}
$$

The quantities required in calculating the velocity profiles and drag are given in the table.

The table also shows a comparison of some of the values B_{n} obtained in the present paper with the exact data of the authors of [1] and [6]. From the good agreement of these quantities and of the velocity profiles for $\mathrm{n}=1$ the conclusion may be drawn that the first approximation used in solving Eq. (10) is adequate for practical purposes.

NOTATION

τ-frictional stress, τ_{W}-the same at the wall; K, n-rheological characteristics of fluid; x-longitudinal coordinate; y-transverse coordinate; $u, v-$ projection of velocity vector on x and y axes, respectively; U-velocity of external stream; L-characteristic length; $R-$ Reynolds number; $\mathrm{R}_{\mathrm{X}}-$ local Reynolds number.

REFERENCES

1. A. Acrivos, M. J. Shah, and E. E. Petersen, A. I. Ch. E. Journ., 6, 312, 1960.
2. L. G. Loitsyanskii, The Laminar Boundary Layer [in Russian], FM, 1962.
3. Th. von Karman and C. B. Millikan, NACA, Rep. no. 504, 1934.
4. R. B. Bird, A. I. Ch. E. Journ. , 5, 6D, 565, 1959.
5. Wells, Jr., Raketnaya tekhnika i kosmonavtika, no. 5, 1964.
6. B. M. Berkovskii, IFZh [Journal of Engineering Physics], 8, no. 4, 1965.

Kalinin Polytechnic Institute, Leningrad

